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The roles which spectral density of fractional frequency fluctuations, two-sample varimcc. and 
power spectra play in different parts of the electromagnetic spectrum are introduced. Their relationship 
is diicussed. Data acquisition in the frequency and the time domain is considered, and examples 
arc Riven throughout the spectrum. Recently proposed methods for the characterization of a single 
hi&quality frequency source are briefly described. Possible difficulties and limitations in the 
interpretation of measurement results are specified. mostly in the prcsencc of a dead time between 
mcasuremcnts. The link between past developments in the field, such = two-sample v-cc and 
spectral analysis from time domain measurement, and recently introduced structure functions is 
emphasized. 

I. INTRODUCTION v(r) = [V, + Ai’( ~0s [2m,r + q(f)] (1) 

Progress in the characterization of tune and 
frequency stability has been initiated owing to the 
work of the various authors of papers delivered 
at the IEEE-NASA Symposium on Short Term 
Frequency Stability [ 19641 and of articles published 
in a special issue of the Proceedings of the IEEE 
[1966]. Presently widespread definitions of fre- 
quency stability have been given by Barnes et al. 
[ 19711. Many of the most important articles on 
the subject of time and frequency have been gath- 
ered in the NBS Monograph 140 [ 19741. Since that 
time, many papers have been published which 
outline different aspects of the field. Owing to the 
extent of the subject, they will be only partly 
reviewed here. We will emphasize recently 
proposed principles of measurements and recent 
developments in the time domain characterization. 
of frequency stability. The subject of time predici’ 
tion and modeling as well as its use for estimation 
of the spectrum of frequency fluctuations [Percival, 
19781 are beyond the scope of this paper. Recent 
reviews which outline several different aspects of 
the field of time and frequency characterization 
have been published [Barnes, 1976; Winkler, 1976; 
Barnes, 1977; Rutman, 1978; Kartaschoff, 1978). 

where V, and Y,, are constants which represent the 
nominal amplitude and frequency, respectively. 
AY(t) and q(t) denote time-dependent voltage and 
phase variations. 

Fractional amplitude fluctuations are defmed by 

E(I) = AV(r)/ F’, (2) 

A power spectral density of fractional amplitude 
fluctuations S.cf) can be introduced if amplitude 
fluctuations are random and stationary in the wide 
sense. Usually, for highquality frequency sources, 
one has 

b(t)1 Q: 1 (3) 

and amplitude fluctuations are neglected. However, 
it is known that amplitude fluctuations can be 
converted into phase fluctuations in electronic cir- 
cuits used for frequency metrology [Barillet and 
Audoin, 1976; Bava et al., 1977a] and that they 
may perturb measurement of phase fluctuations 
[ Brendel et al., 19771. It is then likely that amplitude 
fluctuations will become the subject of more de- 
tailed analysis in the future. 

According to the conventional deftition of in- 
stantaneous frequency we have 

4) = “0 + (1 /Wcb(~) (4) 
2. DEFINITIONS: MODEL OF FREQUENCY 

FLUCTUATlONS In a stable frequency generator the condition 

The instantaneous output voltage of a frequency Icb0)l/2~~0 * 1 (5) 
generator can be written as 

is generally satisfied. 
copyri& 0 1979 by lbe Amelia0 Geopbysicd lloicm. We will use the following notations [Barnes et 
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ul., 19711: 

90) 
x(r) = - 

i(r) 

Znv, 
and y(l) = - 

Znv, 
(6) 

where x(f) and y(t) are the fractional phase and 
frequency fluctuations, respectively. The quantity 
x(t) represents the fluctuation in the time defined 
by the generator considered as a clock. 

At first, we will make the following assumptions: 
1. The quantities x(r) and y(r) are random func- 

tions of time with zero mean values, which implies 
that systematic trends are removed [Burner er al., 
19711. They might be due to ageing or to imperfect 
decoupling from environmental changes such as 
temperature, pressure, acceleration, or voltage. 
Characterization of drifts will be considered in 
section 8. 

2. The statistical properties of the stable fre- 
quency generators are described by a model which 
is stationary of order 2. This point has been fully 
discussed in the literature [Barnes er al., 1971; 
Boileuu und Picinbono, 1976; Barnes, 19761. This 
assumption allows one to derive useful results and 
to define simple data processing for the charac- 
terization of frequency stability. 

Actual experimental practice shows that, besides 
long-term frequency drifts, the frequency of a 
high-quality frequency source can be perturbed by 
a superposition of independent noise processes, 
which can be adequately represented by random 
fluctuations having the following one-sided power 
spectral density of fractional frequency fluctua- 
tions: 

(7) 

S,(j) is depicted in Figure 1. Its dimensions are 
Hz-‘. Lower values of a may be present in the 
spectral density of frequency fluctuations. They 
have not been clearly identified yet because of 
experimental difficulties related to very long term 
data acquisition and to control of experimental 
conditions for long times. Moreover, the related 
noise processes may be difficult to distinguish from 
systematic drifts. 

Finite duration of measurements introduces a 
low-frequency cutoff which prevents one from 
obtaining information at Fourier frequencies smaller 

Fig. 1. Asymptotic log-log plot OS S,m for commonly CUCOUII- 
tercd noise proccssu. 

than l/9, approximately, where 8 is the total dura- 
tion of the measurement [Curler and Seurle, 19661. 
Alternatively, this made it possible to invoke physi- 
cal arguments to remove some possible mathemat- 
ical difficulties related to the divergence of S,(j) 
asf -b 0 for a c CI. 

Furthermore, high p&ss filtering is always present 
in the measuring instruments or in the frequency 
generator to be characterized. It insures conver- 
gence conditions at the higher-frequency side of 
the power spectra for a > 0. 

The spectral density of fractional phase fluctua- 
tions is also often considered. From (a), one can 
write, at least formahy, 

s,cn = (1/4+fWJ.n (8) 

The dimensions of S,(j) are s2 Hz-‘. Similarly, 
the spectral density of phase fluctuations cp(t) is 
such as 

S&f) = P~v,)‘S.u) (9) 

It is expressed in (rad)2 Hz-‘. 
The quantity 2(j) [Hulford et al., 19731 is 

sometimes considered to characterize phase fluc- 
tuations. If phase fluctuations at frequencies >f 
are small compared with 1 rad, one has 

an = :s*tn (10) 

where S,(j) is the spectral density of phase fluc- 
tuations of the frequency generator considered. The 
definition of -E”(j) implies a connection with the 
radio frequency spectrum, and its use is not recom- 
mended. 

Since the class of noise processes for which y(r) 
is stationary is broader than that for which the 
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TABLE I, Designation of noise processes in the generation of the oscillation which is due 
a Designrtion Class of Stationarity to white noise within the bandwidth of the fre- 

2 white noise of phase stationary phase quencydett rmining element of the oscillator [Bla- 
fluctuations qui&e, 1953a, b] . It is often masked by other types 

1 flicker noise of phase stationary first-order 
phase increnlcnts 

0 white noise of frqucncy stationlry first-order 
phase increments 

- I Ilicker noise of frequency stationary second-order 
phase increments 

-2 random walk of frequency stationary second-order 
phase increments 

phase is stationary [ Boileau and Picinbono, 19761, 
S,,(j) should preferably be used in mathematical 
analysis. However, it is true that many experimental 
setups transduce cp(t) into voltage fluctuations and 
allow one to experimentally determine an estimate 
of its power spectral density S,(f). 

Table 1 shows the designations of the noise 
processes considered. It also indicates the class 
of stationarity to which they pertain, as will be 
justified later on. 

S,(f) is one of the recommended deftitions of 
frequency stability [Barnes et al., 19711. It gives 
the widest information on frequency deviations y (1) 
within the limits stated previously. 

3. NOISE PROCESSES IN FREQUENCY GENERATORS 

The white phase noise (a = 2) predominates for 
f large enough. It is the result of &he additive ther- 
mal (for the lower part of the electromagnetic 
spectrum, including microwaves) or quantum (for 
optical frequencies) noise which is unavoidably ..* 
superimposed on the signal generated in the oscilla- 
tor [Curler and Sea& 19661. It leads to a one-sided 
spectral density S,,(f) of the form Fkly2/vi P or 
Fh v$‘/v’, P, depending on the frequency range, 
where k is Boltzmann’s constant, h is Planck’s 
constant, T is the absolute temperature, F is the 
noise figure of the components under consideration, 
and P is the power delivered by atoms. 

The flicker phase noise (a = I) is generated mainly 
in transistors, where this noise modulates the cur- 
rent [Halford et al., 1968; He&y, 1972) . The theory 
of this noise is not yet very well understood. 

of noise but has been observed in lasers [Siegman 
and Arrathoon, 19681 and more recently in masers 
[ perrot et al., 19771. The one-sided spectral density 
of fractional frequency fluctuations is then kT/PQ2 
of h v,,/ PQ’ depending on the frequency range, as 
stated above. Q is the quality factor of the fre- 
quencydete rmining element. 

White noise of frequency is typical of passive 
frequency standards such as cesium beam tube and 
rubidium cell devices as well as stabilized lasers. 
It is related to the shot noise in the detection of 
the resonance to which an oscillator is slaved [Curler 
and Searle, 19661. 

Flicker noise of frequency and the random walk 
frequency noise for which a = - 1 and -2, respec- 
tively, are sources of limitation in the long-term 
frequency stability of frequency sources. They are 
observed in active devices as well as passive ones. 
For instance, flicker and random walk frequency 
noises have been observed in quartz crystal resona- 
tors [ Wainwrighr et al., 19741 and rubidium masers 
[ Vanier ef al., 19771. The origin is not well under- 
stood yet. It might be connected, in the fast case, 
with fluctuations in the phonon energy density 
[Musha, 19751. 

Figures 3 and 5 show, for the purpose of ihustra- 
tion, S,,u) for a hydrogen maser for lo-’ 5 f s 
3 Hz [ Vcssor et al., 19771 and for an iodine- 
stabilized He-Ne laser for 10m2 5 f s 100 Hz [ C&ez 
et al., 1978). In both cases, S,c/) is derived from 
the results of time domain frequency measurements 

t 
O,(T) 

Diffusion processes across junctions of semicon- 
ductor devices may produce this noise. 

Fy. 2. Frequency stability, characterized by the root mean 

White noise of frequency (a = 0) is present in 
quue of the two-sample vari~cc of fractional frequency 
fluctuation, of a hydrogen maser. The M of the ara~h with - - 

oscillators. It is the result of the noise perturbation a slope of -f is typical of white noise of frqucncy, - 
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I . f [M 
lo-’ 1 IO’ 

Fig. 3. Spectral density of frrctionrl frequency fluctuations 
of l hydrogen maser. The parts of the graph with slopes 0 
and 2 coincide with theoretical expectations. 

(see section 6.4), as shown in Figures 2 and 4 but 
is very close to theoretical limits specified above. 

It is worth pointing out here that in systems where 
a frequency source is frequency slaved to a fre- 
quency reference or phase locked to another fre- 
quency generator the different kinds of noise in- 
volved are filtered in the system [Curler and St&e, 
1966; C. Audoin, unpublished manuscript, 19761. 
In these cases, at the output of the system, one 
can fmd noise contributions pertaining to the model 
(7) but appearing on the Fourier frequency scale 
in an order different than that shown in Figure 
1. This is depicted in Figures 6 and 7 for the case 
of a cesium beam frequency standard consisting 
of a good quartz crystal oscillator which is frequency 
controlled by a cesium beam tube resonator. 

The model for the frequency fluctuations is more 
useful if the noise processes can be assumed to 
be gaussian ones (in particular, momenta of all 
orders can then be expressed with the help of 
momenta of second order). The deviation of the 
frequency being the result of a number of elementa- 
ry perturbations, this assumption seems a reason- 
able one. Furthermore, the normal distribution of 

Fig. 5. Spectral density of fractional frquency fluctuations 
of I He-NC iodine-stabilized laser. The solid line represents 
the spectral density of fractional frequency fluctuations corre- 
sponding to experimental results, and the dotted line represents 
the expected vahte of S,.(J). 

j, the mean value of frequency fluctuations 
averaged over time interval r as defined in (16), 
has been experimentally checked for a = 2, 1, 0, 
and -1 [Lesuge and Audoin, 1973, 19771. This 
is shown in Figure 8 for white noise of frequency, 
for instance. 

4. MEASUREMENrS IN THE FREQUENCY DOMAIN * 

Measurement of power spectral density of fre- 
quency and phase fluctuations can be performed 
in the frequency domain for Fourier frequencies 
greater than a few lo-’ Hz owing to the availability 
of good low-frequency spectrum analyzers. 

4.1. Use of a frequency discriminator 

Frequency discriminators are of current use to 
characterize radio frequency and microwave gener- 
ators. A resonant device such as a tuned circuit 
or a microwave cavity acts as a transducer which 

‘s,(fh-3 
rodo, PI 

mJZ _ 

Iti’. \ lo-“. 
lo-y ‘1 [sl I 

10-z 1 lo' 
m.Zl 

.,lJ , 
64 

lo" m-z 1 lo' lo' 
Fii. 4. Frequency stability, charrcterixed by the root mean 

square of the two-sample variance of fractionaI frequency Fig. 6. SpectraI density of fractiotuI frequency fluctuations of 
fluctuations, of a He-NC iodine-stabilized Iaser. a p3d quartx crystei osciktor. 

8 See Appendix Note # 6 
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lo-‘@ f[bhj 

‘lo-’ lo-’ I lo’ lo’ - 

Fii. 7. Spectral density of fractional frequency fluctuations 
of the same quartz crystal oscillator M in F&ure 6 but frequency 
controlled by a Cs beam tube resonance. 

transforms frequency to voltage fluctuations. This 
method can be applied to optical frequency sources 
too, as shown in Figures 9 and 10. Here the source 
is, for instance, a CW dye laser, and the frequency 
selective device is a Fabry-Perot etalon. The second 
light pass allows one to compensate for the effects 
of amplitude fluctuations and to adjust to a null 
the mean value of the output voltage. The slope 
of this frequency discriminator equals 1 V MHz-‘, 
typically, with a good Fabry-Perot etalon in the 
visible. 

I I I I I I \-I 

Fig. 8. Distribution of countin time results for white fre- 
quency noise (cesium beam frequency standards, T = IO s) 
in Galtonian coordinates. Circles represent the cumulative prob- 
ability C0lTCS~lldiiJJ to IT, - ~1 With T = (T, ). Solid tines 
correspond to the normal distribution of the same width. 

t V(v) 

Fig. 9. Principle of frequency to voltage transfer in a frequency 
discriminrtor. 

4.2. Use of a phase detector 

This technique is well suited for the study of 
frequency sources in the radio frequency domain 
0.2 MHz c u0 < 500 MHz, in a range where very 
low noise balanced-diode mixers which utilize 
Schottky barrier diodes are available. This tech- 
nique has mainly been promoted by the National 
Bureau of Standards [Shod, 197 1; Walls and Stein, 
19771. 

Figure 11 shows the principle of the determination 
of the phase fluctuations in frequency multipliers, 
for instance. The two frequency multipliers are 
driven by the same source. A phase shifter is 
adjusted in order to satisfy the quadrature condition. 
One then has 

~0) = D [(o,(r) - M)l (1I) 

where D is a constant and ‘p, and h are the phase 
fluctuations introduced in the devices under test. 
It is assumed that the mixer is properly used to 
allow a balance of the phase and amplitude fluctua- 
tions of the frequency source. 

This technique is often used to characterize phase 
fluctuations of two separate frequency sources of 
the same frequency. The quadrature condition is 

F. f? otolon difhtntitl 

Fig. 10. Principle of frequency noise analysis of a dye laser. 

* See Appendix Note X 25 
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F@. Il. Principle of measurement of phase noise with a highquality balanced mixer used as a phase comparator. 

utrtz Clpl 

P 
Frequency 

Source 

c 
PhlB@ 
omparrto 

t 

output 

insured by phase locking the reference oscillator, 
number 2 of Figure 12, to the oscillator under test. 
Fluctuations of the output voltage u(r) at frequen- 
ciesflarger than the frequency cutoff of the phase 
loop are proportional to phase fluctuations of 
oscillator number 1. On the contrary, components 
of u(t) at frequencies smaller than the above fre- 
quency cutoff are representative of frequency fluc- 
tuations of oscillator number 1. 

The requirement of having a reference oscillator 
of the same quality as the oscillator to be tested 
may be inconvenient. It has recently been shown 
that the phase noise of a single oscillator can be 
measured by using the mixer technique, but with 
a delay line [Lance et al., 19771. Figure 13 shows 
a schematic of the setup. The signal from the 
frequency source is split into two channels. The 
reference channel includes a phase shifter for the 
purpose of adjustment. It feeds one of the mixer 
inputs. The other channel delays tbq signal before 
it is applied to the second mixer input. It can be 
seen that the power spectra density of the mixer 
output is proportional to (2~17,)‘s <n, where TV 
is the delay. The sensitivity of thii technique is 
then reduced for low Fourier frequencies. However, 

output 
Frequency Control 

Fig. 12. Principle of phase noise measurement of oscillators. 
A phase lock loop insures the phase quadrature of the two 
phase-compared s@als. 

some signal to noise enhancement can be achieved 
in a more elaborate configuration with two differen- 
tial delay line systems in which cross-spectrum 
analysis is performed on the signal output from 
the two delay line systems [Lance er ol., 19781. 

Another method has been proposed to determine 
the power spectrum of fractional frequency fluctua- 
tions of a single highquality frequency source 
[Groslumbert, 19771. It is shown in Figure 14. Two 
auxiliary oscillators, waich do not need to be of 
the same quality as the oscillator under test, are 
used. They are phase locked to the frequency 
generator to be characterized. The control voltages 
v,(t) and v2(t) are appropriately filtered in order 
to obtain, at their outputs, a voltage v:(t) = K, (+, 
- +,,) and vi(r) = K2(& - G&J, respectively, where 
K, and K2 are constants and the subscripts 0, 1,. 
and 2 refer to the oscillator under test, oscillator 
number 1, and oscillator number 2, respectively. 
It can be shown that the cross-correlation function 
of vi and vi is proportional to the autocorrelation 
function of the frequency fluctuations of the 
oscillator under test. Its spectral density of frac- 
tional frequency fluctuations can then be obtained 
via Fourier transform. 

4.3. Recision of measurement in the frequency 
domain 

A spectrum analyzer includes a filter of bandwidth 
Af, centered at frequency f, a nonlinear device 
which measures the power in the faltered signal, 
and a low pass filter which integrates the output 
signal for the time T. The integration time T is 
not infiite, and the filter bandwidth A/ is not 
extremely narrow. Only an estimate s(f, Af, T) 
of SV, can then be obtained. Well-known results 
show that the precision p in the measurement of 
the power spectral density of a gaussian process 
is given by 
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4 
Fig. 13. Principle of phase noise measurement of a single-frequency source with a delay line. 

JJ = (T * A”)-“’ (12) * and Av: denote the frequency fluctuations of the 
two sources and Av, the frequency fluctuations of 
the beat note, one has 

No attempt has been made, to our knowledge, to 
specify p more accurately for the different noise 
processes which can be encountered in frequency 
metrology of stable sources. 

Av, v, Av, Av; 
y*=y=- 

I I 
e-- (1% 

VI VI vo 4 

The fractional frequency fluctuations of the beat 
note are then proportional to those of the frequen- 
cies v0 and v6 but multiplied by the factor vO/v, 
which is much larger than unity. 

With stable generators at frequencies lower than 
approximately 100 GHz the frequency fluctuations 
are small enough that the beat note can be at low 
frequency. The counter is then used as a period 
meter, and a high precision in the measurement 
is achievable. 

5. MEASUREMENTS IN THE TIME DOMAIN 

Time and frequency counting techniques are well 
known [Curler and Se&e, 19661. They are the 
easiest to implement to provide information on the 
low-frequency content (f s 1 Hz) of the power 
spectra of fractional frequency fluctuations. 

5.1. The bear frequency method 

A beat note at frequency v, is obtained from 
two frequency sources under test, with frequencies 
v, and v;, respectively, such that v0 =L ~6. If Av, 

Fig. 14. Principle of phase noise measurement of a single high- 
quality frequency source with a corrclator. 

Optical frequency standards show larger fre- 
quency fluctuations in absolute value. For instance, 
a laser stabilized at 500 THz (A = 0.6 pm) with 
a fractional frequency stability of 1 x lo-l3 exhibits 
frequency fluctuations of 50 Hz. They can be easily 
measured if the beat note is at 50 MHz, say, when 
the counter is used as a frequency meter. In the 
case of iodine-stabilized He-Ne lasers the beat note 
is easily obtained by locking the two lasers to 
different hyperfme components of the considered 
iodine transition. Otherwise, the frequency offset 
technique is used [Burger ond Hull, 19691. 

5.2. The time diffrrence method 

The time difference method [Allan and Daums, 
19751 must be used with time standards which 
deliver pulses as time scale marks. Distant time 
comparison and synchronization by TV pulses, light 
pulses, Loran-C pulses, for instance, pertain to this 
category. It provides information on the relative 
phases of the two clocks under test. 

Time interval measurements being very precise 

* See Appendix Note # 26 
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Fig. IS. Principle of the time difference method. 

(a precision of 10-100 ns is typical, depending on 
the class of the counter), they are also used with 
C.W. frequency generators, as shown in Figure 15. 
This method is then well suited to the case in which 
the frequency sources under test have the same 
nominal frequency uO, e.g., atomic frequency stan- 
dards. An auxiliary frequency source, such as a 
frequency synthesizer, with frequency V; allows 
one to obtain, at the output of the mixers, two 
beat notes at the desired frequency Y, = Iu, - 
~61. After amplification the zero crossing of one 
of the beat notes starts the time interval counter, 
and the zero crossing of the other beat note stops 
it. One has 

x, = (~fJ~,XXo - x;> (14) 

where x, is the fractional phase fluctuation of the 
beat note and x,, and xb that of the two frequency 
standards. For instance, with u. = 5 MHz, Y, = 
0.5 Hz, and a precision in the time interval measure- 
ment of 0.1 t~s a precision of lo-” s at the nominal 
frequency v. is achieved. 

6. CHARACTERIZATION OF FREQUENCY STABILITY 
IN THE TIME DOMAIN 

6.1. Significance of experimental data 

It is well established that measurement in the 
time domain with an electronic counter samples 
phase increments and gives A,v(r,) defined as 

4cpk) = cpk + 3 - N,) WI 

The phase increment A+(P&) is related to Tk, the 
average over time interval [1*, I, + T] of fractional 
frequency fluctuations. We have 

1 
v*=- 

tt+. 
y(r’)dr’ (145) 

7 4 

where u, is the mean frequency of the processed 
signal. 

Samples of E can be combined in many different 
ways. Some of those which have been considered 
wil.l be reviewed here. On the other hand, the 
number of samples is finite, and the question arises 
as to the related uncertainty in the characterization 
of frequency stability and of the best use of the 
data. 

6.2. N-sample variance 

The sequence of measurement is as shown in 
Figure 16. The mean duration of each measurement 
is T, and T is the time interval between the begin- 
nings of them. 

In statistical estimation it is common to consider 
sample variance [Papoufis, 1965). The N-sample 
variance of yk is defme$ as 

(17) 

where the factor N/(N - 1) removes bias in the 
estimation. 

The dependence of the expectation value of the 
N-sample variance on the number N of samples, 
the sample time 7, and the power spectral density 
has been considered by Allan [ 19661. We wiII only 
consider special cases in the following. 

It can be shown that computation of the average 
of the N-sample variance introduces a filtering of 
the power spectral density S,,(J) [Barnes er al., 
1971). We have 

s 

m 
b;(N, 7-9 7)) = ~ml~(/)I ‘I (18) 

0 
H(f) is the transfer function of a linear filter which 
has the following expression: 

[gyl-[EGjj 

0% 

- 

4 t r.1 t r+z 

F&. 16. Sequence of time domain measurement. 
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For f such that 

nfTa I (20) 

we have 

Equation (21) shows that for finite N the integral 
in (18) will converge at the lower limit for Q = 
-1 and a = -2, as well as for a = 2, 1, and 
0. One sees that very low frequency components 
of S,,(f) are best eliminated for small values of 
N. 

6.3. Variance of time-averaged frequency 
fluctuations 

W&n N goes to infinity, (u:(w, 7, T)) becomes 
oz(y,.), the variance of time-averaged frequency 
fluctuations or of the first difference of phase 
fluctuations [Cutler and Searle, 19661 as given by 

U’G) = G>‘) (22) 

where angle brackets denote mathematical expecta- 
tion. 

In the presence of a single-pole low-pass filter 
with cutoff frequeng f, we have the following re- 
lation between uzCyL) and S,(j): 

with 

(24) 

Equation (24) shows that o’QT) converges for a 
= 2, 1,0 but diverges for flicker noise of frequency 
(a = -1) and raniom walk of frequency (a = -2). 
The variance 02(y,) is no longer used to characterize 
frequency stability. However, it is useful to relate 
the RF power spectral density to S,,(f) [Rutman, 
19740). 

6.4. Two-sample variance 

For the special case N = 2, (17) gives 
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and we have m 
(032, T, 7)) = 

I 
q.f) 

1 + (flf,) 2 
IWf)12df 

0 

with 

sinnfr 2 
IH2U)l’ = 2 nf7 

[ I 
(sin nf 7-y (27) 

For small f, such that n/T a 1, ]H2(f)]’ varies 
as f ‘. The integral in (26) is thus defined for flicker 
noise of frequency (a = - 1) and random walk of 
frequency (a = -2), as well as for a = 2, 1, and 
0. It is easy to show that the quantity O;,,, - 
I,) represents a second-order difference of phase 
fluctuations. It follows that second-order phase 
increments are stationary for a = - 1 and -2 (as 
specified in Table 1). 

6.4.1. Two-sample variance without dead time. 
The two-sample variance (Allan variance) without 
dead time, for T = T, is now generally accepted 
as the measure of frequency stability in the time 
domain. One sets 

u;:(7) = (42, 7, 7)) P-9 

Table 2 gives asymptotic expressions of u:(r) in 
the cases 2nf,7 > 1 and 2nf,T < 1. Expressions 
of U:(T) in the presence of a sharp high-frequency 
cutoff fh have been given by Barnes et al. [ 19711 
for the case 2wfhT zw 1. 

One sees in Table 2 that a:(~) has a characteristic 
r dependence for each type of noise considered, 

TABLE 2. Asymptotic expressions of the two-sample variance 
for the noise processes considered 

u;(T) 

S,U) 2nf,r a I 2%~ a I 

hJ2 
.?!!A a 

8m’ 2r * 

h,f 
3h, h @/,r) 

4n’r’ 

(42, T. 7)) = f (WA+, -9d’) (25) 

a See Appendix Note # 27 
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such as U:(T) = k/7’. This is specified as follows 
for 271fcT > I: 

Q )r -- 
2 2 
1 2 
0 1 

-I 0 
-2 -I 

For a = -1 the ~~(7) graph is a horizontal line, 
which justifies the designation ‘flicker floor’ for 
that part of the graph. 

Usually, under experimental conditions the rela- 
tion 2nf,T ZS- 1 is satisfied. The noise processes 
which perturb the oscillation can then be identified 
from a U,,(T) graph if it is assumed that the afore- 
mentioned model of frequency fluctuations is valid. 
Table 2 shows in which cases U:(T) depends on 
the frequency cutoff. The latter must then be 
specified. 

The case 271f,T a 1 is useful for the analysis 
of the effect of frequency of phase servocontrol 
loops where the frequency fluctuations of the fre- 
quency reference are low-pass filtered. Bias func- 
tions have been given to relate (1) the two-sample 
variance with and without dead time and (2) the 
two-sample variance to the N-sample variance 
[Barnes et ol., 19711. 

NJ-’ lo-’ 1 D 00 

Fig. 17. The solid line represents the variation of b-,(u;(2, 
T, 7)) versus r/(T - T) for the flicker noise of frequency. 
The dotted line represents the mymptotic value for (T - T) 
a T. 

time is then 2rrf,(T - T) a 1. Results for 2w/,T 
< 1 are also available IP. Lesage and C. Audoin, 
private communication, 1978). Table 3 shows that 
in the presence of-dead time, i.e., Zlrf,(T - T) 
> 1, the expression for the two-sample variance 
is noticeaibly modified for a = -1 and -2. 

The case of the flicker noise of frequency is 
particularly interesting. Figure 17 shows the varia- 

6.42. Two-sample variance with dead time. * tion of the two-sample variance with dead time 
General expressions for the N-sample variance with 
dead time have been given (Barnes et al., 19711 
for useful values of a if the condition 2wfh7 > 
I is satisfied. The case of the two-5ample variance 
with dead time has not been emphasized enough 
yet. Table 3 compares the two-sample variance with 
and without dead time when the condition 2mf,T 
> 1 is fulfilled. The condition of negligible dead 

TABLE 3. Comparison of the two-sample variance with and 
without dead time for 2~rL7 zw I 

ot(2. T. T) 

: See Appendix Note # 28 

as a function of 7/(T - T). The flicker floor does 
not exist anymore if the value of this ratio is 
modified when the sampling time T is changed. The 
identification of the noise process which perturbs 
the oscillation might then be wrong if the effect 
of dead time is not taken into account. ** 

6.5. Precision in the estimation of the two-sample 
variance 

Measurements are always of fdte duration, and 
therefore the number of available values of y& is 
finite. We are then faced with the problem of the 
precision in the estimation of the time domain 
frequency stability measurement. This is an impor- 
tant one because successive characterizations of 
the frequency stability of a given device allow one 
to get information on the stationarity of the pr* 
cesses involved in the perturbation of its frequency 
but within the limits of the precision of the charac- 
terization. Precision in the estimation of the fre- 
quency stability of individual oscillators of a set 
ofp frequency generators (p > 2) [Gray and Allan, 

** See Appendix Note # 29 
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19741 critically depends on the precision of the 
P(P - 1)/2 frequency comparisons which can be 
performed by arranging oscillators in pairs. Fur- 
thermore, the uncertainty in the determination of 
~~(7) translates directly into the uncertainty in 
determining the h, coefficients if the frequency 
generator is perturbed by noise processes modeled 
by (7). 

The precision in the estimation of time domain 
measurements of frequency stability has been con- 
sidered by several authors [Tuusworthc, 1972; Lc- 
sage and Audoin, 1973; Yoshimura, 19781. It has 
been determined for most of the experimental 
situations which can be encountered in the two- 
sample variance characterization of frequency 
stability, with or without dead time (P. Lesage and 
C. Audoin, private communication, 1978). 

Calculation of the expectation value of the two- 
sample variance according to (25) requires an infinite 
number of data. But, in practice, only m counting 
results are available, and one calculates the estimat- 
ed average of the two-sample variance as follows: 

1 n-l 

bz(2, T. T, m) = x 
2(m - 1) k-l 

U k+l - G’ (29) 

One can easily show that the expectation value 
of gz(2, T, T, m) equals the averaged two-sample 
variance with dead time. Thus the finite number 
of measurements does not introduce bias in the 
estimation of the two-sample variance. 

The estimated averaged two-sample variance 
(EATSV) being a random function of m, we need 
to characterize the uncertainty’in the estimation. 
We thus introduce the variance of the EATSV; 
according to the common understanding of P 
variance. we set 

u2 [8:(2, T, 7, m)l 

= ( [9~(2, T, 7, m) - GJ;(~,~ T, ?))I ‘) (30) 

With the expression (29) of the EATSV we get 

u2 @:(2, T, 7, m)l 

= [ 2(m’v *,3’(g,#‘4 t31) 

with 

& = (f,+, - u,)’ - 2(0;(2, T, 7)) (32) 

The classical law of large numbers [Pupoulis, 
19651 which states that the true variance of a sum 

of (m - 1) uncorrelated random variables decreases 
as l/(m - I), even for small values of (m - l), 
does not apply here. We are considering the quanti- 
ties B, which are cor&ated because two adjacent 
differences u,,, - y,) and u,+2 - j,,, ) are ob- 
viously not independent. 

Equation (31) can also be written as 

u2 r&:(2, T, 7, m)] = - 

1 n-2 

+ 
c 

2(m - l) k-i 

(m - 1 - k)T, 1 (33) 

with , 

rk = (h&-k) (34) 

r,, which does not depend on m, represents the 
autocorrelation coefficient of B, and B,+. Since 
the same data are used in two adjacent pairs, the 
autocorrelation coefficient r, , and possibly others, 
differs from zero. Equation (33) then shows that 
the l/(m - 1) dependence also occurs for the 
random variables considered, but asymptotically for 
large enough values of (m - 1). 

The variance of the EATSV can be relatqd to 
S,(J) if it is assumed that the quantities y, are 
normally distributed. This is a reasonable assump 
tion, as shown in section 2. 

It is useful to introduce A(m), the fractional 
deviation of $;(2, T 7, m) defined as 

A(m) = 
b:(2, T, T, m) - (u,‘(2, T, 7)) 

b;(2, T, 7)) 
(35) 

The standard deviation u [A(m)] defines the preci- 
sion in the estimation of the two-sample variance. 
Expressions for u [A(m)] which are valid for m 
> 2 have been established for all possible values 
of 2’rrf,7 and Znf,(T - 7) but will not be given 
here. 

In practice, the time domain frequency stability 
of a frequency source is characterized by the 
standard deviation (8,2(2, T, T, m)] “2. We there- 
fore consider 8 defined as 

~ [6;(2, T, 7, m)] I” - (u;(2, T, T)) “’ 
= 

-(cr;(Z, T, 7))“’ 
(36) 

u(6) specifies the precision in the estimation of 
the time domain frequency stability measurement 
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t Ka 

I r 

1 10 lO0- 

Fig. 18. Variation of K, es a function of r = T/r for the 
commonIy encountered noise processes and for 2vf,r = IO. 

from a limited number of data and allows one to 
draw error bars on a frequency stability graph. 

For 2nf,7 zw 1 and m B 1 we have 

u(6) 31 K-m-"' (37) 

The values of K, are given as follows subject to 
the condition that the dead time is negligible, i.e., 
Znf,(T - 7) a 1: 

a K A 
2 0.99 
I 0.99 
0 0.87 

-I 0.77 
-2 0.75 

In the presence of dead time the values of K, 
depend on the noise process considered as well 
as the values of 2qf,7 and I = T/-r. Figure 18, 
valid for 21rf,7 = 10 shows that the dependence 
of K, with dead time is especially pronounced in 
the vicinity of I = 1 for a = 1 and 2. 

7. CHARACTERIZATION OF FREQUENCY STABILITY 
VIA FILTERING OF PHASE OR FREQUENCY NOISE 

Equations (27) and (28) show that the definition 
of the time domain measurement of frequency 
stability U;(T) involves a filtering of S,,(j) in a linear 
filter. Figure 19 shows the impulse response of this 
filter, which represents the sequence of measure- 

h ft) 

t 

Fig. 19. Impulse response of a linear Nter which represents 
computation of two-sample varience. 

ment for T = T, and Figure 20 depicts the related 
transfer function. One can also consider the effect 
of filtering a voltage proportional to y(t) or x(r) 
in a physically realizable analog filter. 

A high pass filter of cutoff frequency 1 /rrr has 
been considered [Rutman, 19746; Rutman and 
Suuvuge, 19741. Its input receives a voltage propor- 
tional to x(r). It is provided by a mixer used as 
a phase comparator. The rms value of the filtered 
signal is measured. when the frequency cutoff is 
changed, this rms value shows the same lo versus 
a dependence as Shown in section 6.4.1. More 
interesting is a bandpass filter centered at the 
variable frequency f = l/27 but with a fixed value 
of its quality factor. It allows one to distinguish 
white and flicker noise of phase, as it gives k = 
3 for a = 2; the lo versus a dependence being 
otherwise unchanged for a = 1, 0, - 1, and -2. 

Similarly, a frequency discriminator, giving an 
output proportional to y(t), followed by two cas- 
caded resistance-capacitance (RC) filters and asrms 
voltmeter allows one to obtain a useful approxi- 
mation of the two-sample variance. The filters 
insure low-pass and high-pass filtering with RC = 
7/2 [Wiley, 19771. 

Fii. 20. Transfer function of the linear filter with irnpulsb 
response shown in Figure 19. 

TN-182 



TlME AND FREQUENCY 533 

8. SPECTRAL ANALYSIS INFERRED FROM TIME 
DOMAIN MEASUREMENTS 

The methods of time domain characterization of 
frequency stability reviewed above allow one to 
identify noise process if they are described by 

(38) 
m- -1 

This may not be the case. Furthermore, it is of 
interest to determine the power spectral density 
of fractional frequency fluctuations for Fourier 
frequencies lower than 1 Hz. In this region, time 
domain measurements are the most convenient, and 
the question arises as to their best use for spectral 
analysis. 

8.1. Selective numerical fillerirg 

Equations (24) and (27) show that calculation of 
the variance of the second difference of phase 
fluctuations (the two-sample variance) involves a 
more selective filtering than calculation of the 
variance of the fust difference of phase fluctuations. 
One can then consider higher-order differences 
[Bumes, 1966; Lesage and Audoin, 1975a, b] . The 
nth-order difference of phase fluctuations is denot- 
ed as nA,,,cp(t,), where 7 and T have the same 
meaning as in section 6.1. and 6.2. This nth dif- 
ference is defined by the following recursive equa- 
tion: 

“A,.cg(f,) = ("-')AreT'p(t, + T) - '"-"A,,&) (39) 

which introduces binomial coefficients Ci-, . We 
have 

r-l 
“A,,d$) = C (-WC:-, ((o It, + (n - 1 - i)T + ~1 

I-0 

-qJ[r,+(n-l-i)T]) w  

The transfer function H”(/, T, T) of the linear filter 
which represents the calculation of the variance 
of the nth difference of phase fluctuations is given 
by 

p-1 

IHm(f, TV 41 = --& (sinlrfT)“-’ sinnfr (41) 

It should be pointed out that for f 7 a 1, one 
has 

C& 

C;- 

-1or 
u . 

.-c; 

--c; 

-C4 

+loT t 

I-- 

Fii. 21. Impulse response of a linear Nter which represents 
computrtion of the variance of the 20th difference of phw 
fluctuations. Cj represents binomial coefficients. 

Figure 21 shows the impulse response of the linear 
filter which represents the calculation of the 
variance of the 20th difference of phase fluctua- 
tions, and Figure 22 shows the related transfer 
function. A selective filtering is then involved 
around frequency l/27. 

Such a variance is also known as a modified 
fiadamard variance [Baugh, 19711. The spurious 
responses at frequencies (21 + 1)/27, where 1 is 
an integer, can be eliminated by a proper weighting 

3110'. I 

2110’. 

IO’ . 

h.C . A . A 2yc, 
0 1 3 5 7 

Fig. 22. Transfer function of the linear fiiter considered in Fbure 
21. Ik((f, T, ?)I - (Z?rfT)“-’ f 7 a I (42) 

TN-183 



534 LESAGE AND AUDGIN 

of measurement results or by ftitering with the help spectral density for discrete values of the Fourier 
of an analog filter [Groslumberr, 1976) . frequency. 

Such a technique of linear filtering has been used 
to show that good quartz crystal oscillators exhibit 
flicker noise of frequency for Fourier frequencies 
as low as lo- 3 Hz [tesuge and Audoin, 197561. 
Furthermore, it is well suited to the design of 
automated measurement setups [Peregrine and 
Ricci, 1976; Groskumberr, 19771. 

9. STRUCTURE FUNCTIONS OF OSCILLATOR 
FRACTIONAL PHASE AND FREQUENCY 

FLUCTUATIONS 

The best use of experimental time domain data 
for selective filtering has been considered by Boi- 
leuu [ 19761. 

Interest in the variance of nth-order difference 
of phase fluctuations was recognized early in the 
field of time keeping (see for instance, Barnes 
[ 19661). This can be easily understood from (43). 
which shows that an efficient filtering of low- 
frequency components of frequency fluctuations 
is then introduced. It allows one to deal properly 
with frequency drifts, which will now be considered, 
and poles of S,.(j) of order 2(n - 1) at the origin. 
It is equivalent to saying that the nth difference 
of phase fluctuations allows one to consider random 
processes with stationary nth-order phase incre- 
ments. 

8.2. High-puss fihering 

If frequency fluctuations v(r) are filtered in an 
ideal high-pass filter with transfer function G,,cf,, 
j) such that 

(43) 

its output z(t) is such that 

t+ - 
5 5 

w 
G,(f,f, >s,<n4 = qn4 (W 

Equation (404) shows that the dzrivative of C? is 
-S,(j), and spectral analysis, and therefbre 
characterization of frequency stability, are possible, 
in principle, by high-pass filtering. 

Possible realization of the high-pass filter by 
techniques of digital data processing have been 
specified, such as the method of ftite-time variance 
and the method of finite-time frequency control. 
Processing of finite-time data is aimed to properly 
deal with the nonintegrable singularity of the power 
spectral density at Y = 0 [Boileuu, 1975; Boileuu 
and Pi&bono, 1976). The method is well suited 
to the analysis of drifts or slow frequency changes. 
Practical use of this method has not been reported 
yet. 

8.3. Use of the sample spectral density 

It has been shown in section 8.1. that spectral 
analysis from the Hadamard variance or its modified 
forms requires a series of measurements at time 
interval T in order to specify the spectral density 
at frequency l/27. Another point of view has been 
considered [ Boileuu and &ecourtier, 1977) . From 
a set of measurements of yk, sampled at frequency 
I /T. it allows one to obtain an estimation of the 

where Q, is a random variable modeling the kth- 
order frequency drift and (o(1) represents random 
phase fluctuations. We then have 

I I’ 
X’(t) = 

7 -2 
d,-, p + *(I) (47) 

and 
I-I *k 

Y’(l) = c dkE +Y(t) 
k-l 

(48) 

, where dk = fk,/21w, is the normalized drift coeffi- 

This question has been formalized by Lindsey 
and Chic (1976, 197q, who introduce structure 
functions of oscillator phase fluctuations. The nth 
order structure function of phase fluctuations is 
nothing else but the variance of the nth difference 
of phase fluctuations, as considered in section 8. 
Then, by deftition, the n&order structure function 
of fractional phase fluctuations is given by 

D!“)(T) = ~([“A,.,xO,)l ‘1 (45) 

where E ( *) means expectation value. The fractional 
phase (or the clock reading) at time r, is x(t,). 
We assume T = 7. 

Let us consider an oscillator, the phase (o’(r) 
of which is of the following form except for an 
additive constant: 
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cient and x(r) and y(f) have the same meaning as 
in the preceding sections. The notations x’ and y ’ 
refer to an oscillator with drift. 

It can then be shown that we have 

Do”) = +‘E [d;-,] 

5 

c) 
+2” s,(f) 

si2.P (n/r) 
I=n 

0 cwl 2 
df (49) 

D(“)(T) = 2k 5 
. 

I s <n 
sil+ (IrjT) 

Y 
(ws 

df I>n (50) 

0 

If one applies (49) to the case of an oscillator 
without drift, one can easily show that the following 
equations are satisfied: 

a’&) = (1/72)0”‘(T) I (51) 

and 

d,(T) = ( l/2T2)o;‘)(T) (52) 

This is indeed not surprising because apart from 
more or less complicated mathematical formalism 
the definitions of the considered variances and 
structure functions are closely related, as has been 
emphasized here. 

Relations between sample variance and structure 
functions have been given by Lindsqv ond Chic 
[ 19761, whereas the relation between structure 
functions and several different approaches of fre- 
quency stability characterization has been analyzed 
by Ruzmun [1977, 19781. 

For the generally accepted noise model defined 
by (7) the T dependence of higher-order structure 
functions is the same as the two-sample variance, 
as shown in Table 4 [Lindsey und Chie, 19786 ] . 
As stated above, structure functions of order n 
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allow one to consider spectral densities which vary 
asf” at the origin with a L -2(n - 1). For instance, 
for n = 3 it is possible to characterize frequency 
fluctuations of an oscillator with a power spectral 
density of fractional frequency fluctuations given 
by S,Cr> = x:-. h.f”. This oscillator exhibits 
stationary third-order increments of phase fluctua- 
tions. 

In the presence of a frequency drift described 
by a polynomial of degree 1 - 1, structure functions 
of degree n < I are meaningless: their computation 
yields a time-dependent result. For n = I the Ith 
structure function shows a long-term T dependence 
proportional to TV. This dependence disappears for 
n > 1. Although a power spectral density of the 
for@-@-‘) would also give the structure functions 
a variation of the form TV, this variation does not 
depend on n, provided that the function is meaning- 
ful. It is then possible, at least in principle, to 
identify frequency drifts and to specify their order. 
This is illustrated in Figure 23 according to Lindsq 
and Chie [19786]. However, there are not yet 
experimental proofs that such a characterization 
is achievable in practice. 

10. POWER SPECTRAL DENSITY OF STABLE 
FREQUENCY SOURCES 

The power emitted by a source of time-dependent 
voltage v(t) given by (1) is S,(w) d u in the frequency 
range [u, v + dv] , where S,(u) is the power spectral 
density of the source. The dimensions of S,(v) are 
V2 Hz-‘. The main interest of power spectral 
density, in frequency metrology, is related to high- 
order frequency multiplication. We will only intro- 
duce the subject by giving the relations between 
S,(V) and S,(J) and stating present problems in 
the field. 

TABLE 4. SWIICIU~C functions of orders I, 2. 3, md 4 for fractional phase fluctuations of commonly encountered noise processes 
for 2n/,r a I 

D”‘(r) . 

L ha/, 
n’ 

D (‘)( T) I 

EhJ, 
2na 

hf 

ho 
h-,f -’ 

h-a/ -’ 

$4 hfnf;rI 

JioT 
4h-,? h 2 
4 
-n’h-,T’ 
3 

F h, tn (“f.7) 
Tr ’ 

3h,r 
6.75 h-,7* 

2n’h-,t’ 

5 h, hi (“/,T) 

Ioh,? 
20.7 h-,7’ 

yn’h-,T’ 

From Undqy and Chk (197861 
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where Au is the half width at half maximum of 
the power spectra defined as 

2Av = m$h, (57) 

We obviously have 2aAu . T= = 1. If oscillators 
are considered, one has h, = kT/PQ’ in the 
radiofrequency and microwave domain and h, = 
h v,/PQ 2 in the optical frequency domain, where 
P is the power delivered by the oscillator and Q 
the quality factor of the frequency-determining 
element. Table 5 gives theoretical values of co- 
herence time and linewidth of good oscillators. It 
is only intended to illustrate a comparison, often 
made, of the spectral purity of oscillators. It must 
be pointed out that, in practice, other noise pro- 
cesses exist which modify these results. Even any 
meaning of T, and Au is removed if R,(T) is not 
defmed. 

Multiplication of the frequency by n multiplies 
Av and divides 7, by the factor n2. 

lo- 
T 14 m 

1 lo lo' lo' lo' lo5 

Fig. 23. (Solid line) Two-sample variance of an oscillator 
showing a linear frequency drift of IO-” per day and flicker 
noise of frequency given by S,(J) = 7.2 x IO-“/-‘. (Dotted 
line) The third difference of fractional phase fluctuation is 
independent of the drift (according to Lindsry und Chic [ 1978bj. 

Negligible amplitude noise and gaussian phase 
fluctuations being assumed, it is well known that 
the autocorrelation function of u(t) is R,(T) given 
by 

Ru (4 = 2 cos2nv,1 exp [ -~(2lrv,)‘ct (v,)] (53) 
L 

As C?(E) is only defined for stationary phase 
fluctuations and for phase fluctuations with station- 
ary first increments, the same is true for R”(T) and 
therefore S,u). 

10.1. White noise of frequency 

This is the simplest to deal with. If the frequency 
of the source is perturbed by a broadband white 
noise of frequency, one has S,,(j) = h, and d(x) 
= (h,/27). Whence 

vi 
Rub) = T cos2nvor exp 

ITI 
-- 

( 1 
(54) 

7 c 

where T, is the coherence time of the signal. We 
have 

T= = (&;h,) -’ (55) 

The one-sided power spectral density is then repre- 
sented by a Lorentzian given by 

S,(v) = v: 2nAv 

(2rAv)’ + [2n(v - vo)] 2 (56) 

10.2. White noise ofbhase 

Presently available good quartz oscillators are 
affected by white noise of phase. It is easy to show 
from the definition (16) of yk that the following 
equation is satisfied: 

f [~~WGl 2 = R, (0) - 3 6) (58) 

where R*(T) denotes the autocorrelation function 
of the stationary phase fluctuations v(l). 

The expression of the one-sided S,(V) then fol- 
lows putman, 1974~; Lindsey and Chie, 1978a): 

S,(v) = q e-=*(O) [8(v - vo) 

+S,(v-v,)+~s,(v)~s,(v)+ *-.I (59) 

where the asterisk denotes convolution and the 
bracket contains an infinite set of multiple-convolu- 
tion products of S,(u) by itself. Such an equation 
is not easily tractable. It is the reason why the 

TABLE 5. Theoretical values of correlation time and power 
spectrum linewidth for various oscillators 

Oscillator v.,. Hz h,. Hz-’ T,, s 2Av. Hz 

5-MHZ 
quartz xtal 5 x 10’ 4 x IO-n IO” 3 x 10-l’ 

H maser 1.4 x IO9 4 x lo-” IO’ 3 x lo-’ 
He-NC laser 5 x 10’. 3 x IO- lo-’ 30 
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approximation of small-phase fluctuations is often 
made. If R,(O) = (c’ a I, one has 

S”(V) = $2 [6(u - Yo) + s&J - vo)] w 

In this approximation the power spectrum consists 
of a carrier at frequency v,, around which the 
spectrum of the phase fluctuations is translated. 

If the frequency of the signal is multiplied by 
n, the mean squared frequency fluctuation becomes 
“‘(0. If n’(p2 a 1, the power spectral density 
is then given by 

S”(V) I T e-J (S(lJ - nwo) + n’S,(v - I+))] (61) 

The power in the carrier decreases, and the power 
in the pedestal increases. The relative powers in 
the carrier PC and in the pedestal P, are then given 
by 

p, I c-7 (62) 

P, = 1 -e-p (63) 

respectively, where +2 represents the mean squared 
value of phase fluctuations at the signal frequency 
considered. It has been proved that (62) and (63) 
are valid, even if the condition 7 < 1 is not 
satisfied (F. Clerc, private communication, 1977). 

Fii. 24. Variation of the rtlotiv~wcr in the carrier P, and 
the pedestal P, as a function of +‘, the mean squared phase 
fluctuations. 

Figure 24 shows the variation of P, and P, as 
a function of 2. One easily understands that the 
carrier may disappear if the multiplicative factor 
is high enough. This has been theoretically and 
experimentally investigated by Walls und de Murchi 
[1975], Bovu er al. [ 197761, and Godone er 41. 
[ 19781. A signal has been synthesized at 761 GHz, 
starting from a ~-MHZ quartz oscillator, which 
verities theoretical conclusions. 

10.3. Other noise processes 

Much work remains to be done to analyze proper- 
ly the effect of noise such as the flicker noise of 
frequency or the random walk of frequency which 
contributes power very close to the carrier. The 
very interesting semiempirical approach by Halford 
[ 197 l] has not yet been justified either theoretically 
or experimentally in a convincing manner. 

I I. CONCLUSION 

Widely used theoretical and experimental meth- 
ods for the characterization of frequency stability 
in the time and frequency domain have been out- 
lined. Recently used or proposed experimental 
methods have been reviewed. The effect of dead 
time on the interpretation of time domain measure- 
ments, as well as on their precision has been 
emphasized. Recently introduced structure func- 
tions have been considered as well as their interest 
for the elimination of frequency drifts. The prob- 
lems in the relation between the radiofrequency 
power spectral density and the power spectral 

density of phase fluctuations have been briefly 
summarized. 
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